# Heterodiene Syntheses. Part XVI. ${ }^{1}$ A New [4 + 2] Cycloaddition Pathway in the Reaction of 2-Oxoindolin-3-ylideneacetophenones with Ethyl Vinyl Ether 

By Gianfranco Tacconi,* Andreina Corsico Piccolini, Pier Paolo Righetti, Enrico Selva, and Giovanni Desimoni, Istituto di Chimica Organica dell'Università, 27100 Pavia, Italy


#### Abstract

In addition to dihydropyran[(2) and (3)] and dihydrofuran (4) derivatives, the reaction of (1-acetyl-2-oxo-indolin-3-ylidene) acetophenones with ethyl vinyl ether gives 1 -acetyl-3-aroyl-5-ethoxy-2a,3,4,5-tetrahydro-benz[cd]indol-2(1H)-ones. Their formation is rationalized in terms of a Diels-Alder reaction between the vinyl ether and the styrenic diene system of the oxoindolylidene derivatives, followed by a hydrogen shift and rearomatization. The configuration and conformation of the new adducts were determined by n.m.r. spectroscopy and confirmed by $X$-ray analysis.


We have previously ${ }^{2}$ described the reaction of ( $E$ )-2-oxo-indolin-3-ylideneacetophenones (1) ${ }^{2}$ with ethyl vinyl ether to give cis- and trans-2,3-dihydropyrano [2,3-b] indoles (2) and (3) via a $[4+2]$ heterodiene cycloaddition, and 3 -(2-oxoindolin- 3 -yl)dihydrofurans (4), whose formation involves a zwitterionic intermediate (Scheme 1). When the $N$-substituent is an acyl group

## RESULTS AND DISCUSSION

The elemental analysis of the colourless by-product is consistent with a $1: 1$ adduct, and the i.r. spectrum still has three carbonyl bands, with the ketonic absorption shifted to higher wave number owing to removal of conjugation (see Experimental section). If the exocyclic $\mathrm{C}=\mathrm{C}$ group is involved in the reaction, at first glance a


Scheme 1
all the aroyl substrates ( $1 ; \mathrm{Ar}=\mathrm{Ph}, p-\mathrm{MeO} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$, or $p-\mathrm{NO}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$ ) gave a low yield of a fourth product; we report here the elucidation of its structure, which helps to clarify the complex mechanism of heterodiene reactions and indicates their synthetic possibilities.

[^0][ $2+2]$ cycloaddition to give a spirocyclobutane derivative or a Michael reaction seem the most reasonable pathways since such behaviour has already been found in enamine reactions. ${ }^{3}$

However, the n.m.r. spectra (Table 8) showed the loss of an aromatic proton from the indoline system. Decoupling experiments (Figure 1) showed the presence of
${ }^{3}$ G. Tacconi, A. Gamba, F. Marinone, and G. Desimoni, Tetrahedron, 1971, 27, 561.
the sequence $\mathrm{CH} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH} \cdot \mathrm{CH}$. Therefore, a tricyclic structure, formed by a reaction involving both the exocyclic double bond and the 4 -position of the indoline is proposed, with the formation of a new type of adduct: a 1-acetyl-3-aroyl-5-ethoxy-2a,3,4,5-tetrahydrobenz[cd]indole (5).
the same zwitterionic intermediate already proposed for the formation of (4), ${ }^{2}$ the positive end of which could perform an electrophilic intramolecular attack at the $4-$ position of the indoline [route (b)]. If pathway $(b)$ were followed, the electrophilic attack would be favoured by an electron-donating group in position 5, whereas an



Figure 1 N.m.r. spectrum of the adduct (5a)

The question arises as to whether the formation of (5) occurs via a Diels-Alder reaction between the vinyl ether

(5) a; $R=X=H$
b; $R=O M e, X=H$
c; $R=\mathrm{NO}_{2}, X=H$
d; $R=H, X=O M e$
e; $R=H, X=\mathrm{NO}_{2}$
and the styrene-like fragment, followed by hydrogen transfer and rearomatization [Scheme 2, route (a)] or via

[^1]electron-attracting group should disfavour the reaction. Therefore, the reactions of 1-acetyl-5-methoxy- and 1-acetyl-5-nitro-2-oxoindolin-3-ylideneacetophenones (6a and b) with ethyl vinyl ether were studied.

Both substrates gave comparable amounts of the tricyclic adducts ( 5 d and e) as well as the methoxy-analogues of (2)-(4) or the nitro-analogues of (2) and (3), respectively. Since substituents with opposite electronic characters thus show no effect on the formation of the new adduct, a Diels-Alder pathway [Scheme 2, route (a)] is proposed. This reaction mode can be compared with that already found for 2 -oxoindolin-3ylideneacetone and acetylenecarboxylates. ${ }^{4}$ If the latter example can be regarded simply as a 'direct' DielsAlder reaction ${ }^{5}$ between an aromatic diene ${ }^{6}$ and acetylenecarboxylates, which probably act as acceptors, ${ }^{7}$ the reaction mode reported here is unusual, since vinyl ethers usually behave as donors with $\alpha \beta$-unsaturated carbonyl derivatives. ${ }^{8}$

[^2]The n.m.r. spectra of the adducts (5) were analysed in detail. The C-2a proton signal appeared as a doublet with a large 2a,3-axial-axial coupling; the aroyl substituent must therefore be in the equatorial position (see Figure 1). The C-5 proton showed two almost equal and small equatorial-equatorial and equatorial-axial

Diels-Alder cycloaddition, since an endo-approach is required (Scheme 2) on account of the ( $E$ )-configuration of the starting material (l). ${ }^{3,9}$ The following step is a rearrangement, driven by the aromaticity gain, of the adduct formed first through a [1,3] suprafacial hydrogen shift; this mode of reaction gives the configuration


Table 1
Bond lengths ( $\AA$; e.s.d. less than $0.005 \AA$ ) and bond angles ( ${ }^{\circ}$; e.s.d. less than $0.5^{\circ}$ ); figures involving hydrogen atoms are not listed

| Distances |  |  |  |
| :---: | :---: | :---: | :---: |
| N(1)-C(2) | 1.426 | $\mathrm{C}(7)-\mathrm{C}(8)$ | 1.386 |
| $\mathrm{N}(1)-\mathrm{C}(8 \mathrm{a})$ | 1.433 | $\mathrm{C}(8)-\mathrm{C}(8 \mathrm{a})$ | 1.379 |
| $\mathrm{N}(1)-\mathrm{C}(16)$ | 1.390 | $\mathrm{C}(8 \mathrm{a})-\mathrm{C}(8 \mathrm{~b})$ | 1.385 |
| $\mathrm{C}(2)-\mathrm{C}(2 \mathrm{a})$ | 1.516 | $\mathrm{C}(9)-\mathrm{C}(10)$ | 1.492 |
| $\mathrm{C}(2)-\mathrm{O}(19)$ | 1.202 | $\mathrm{C}(9)-\mathrm{O}(25)$ | 1.210 |
| $\mathrm{C}(2 \mathrm{a})-\mathrm{C}(3)$ | 1.515 | $\mathrm{C}(10)-\mathrm{C}(11)$ | 1.373 |
| $\mathrm{C}(2 \mathrm{a})-\mathrm{C}(8 \mathrm{~b})$ | 1.486 | $\mathrm{C}(10)-\mathrm{C}(15)$ | 1.398 |
| $\mathrm{C}(3)-\mathrm{C}(4)$ | 1.542 | $\mathrm{C}(11)-\mathrm{C}(12)$ | 1.416 |
| $\mathrm{C}(3)-\mathrm{C}(9)$ | 1.520 | $\mathrm{C}(12)-\mathrm{C}(13)$ | 1.365 |
| $\mathrm{C}(4)-\mathrm{C}(5)$ | 1.537 | $\mathrm{C}(13)-\mathrm{C}(14)$ | 1.320 |
| $\mathrm{C}(5)-\mathrm{C}(5 \mathrm{a})$ | 1.508 | $\mathrm{C}(14)-\mathrm{C}(15)$ | 1.406 |
| $\mathrm{C}(5)-\mathrm{O}(22)$ | 1.432 | $\mathrm{C}(16)-\mathrm{O}(17)$ | 1.211 |
| $\mathrm{C}(5 \mathrm{a})-\mathrm{C}(6)$ | 1.405 | $\mathrm{C}(16)-\mathrm{C}(18)$ | 1.491 |
| $\mathrm{C}(5 \mathrm{a})-\mathrm{C}(8 \mathrm{~b})$ | 1.359 | $\mathrm{O}(20)-\mathrm{C}(21)$ | 1.415 |
| $\mathrm{C}(6)-\mathrm{C}(7)$ | 1.381 | $\mathrm{O}(22)-\mathrm{C}(23)$ | 1.423 |
| $\mathrm{C}(6)-\mathrm{O}(20)$ | 1.370 | $\mathrm{C}(23)-\mathrm{C}(24)$ | 1.492 |

couplings with the $\mathrm{C}-4$ protons, the latter axial one also being coupled (axial-axial) with the C-3 proton. Therefore the 5-ethoxy-group is axial and trans to the aroyl substituent.

The preferred conformation of the cyclohexene ring (c) is thus represented as in (7). The trans-OEt,COAr configuration allows us to infer the transition state of the

| Angles |  |  |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(8 \mathrm{a})$ | 109.1 | $\mathrm{N}(1)-\mathrm{C}(8 \mathrm{a})-\mathrm{C}(8)$ | 131.0 |
| $\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(16)$ | 126.3 | $\mathrm{N}(1)-\mathrm{C}(8 \mathrm{a})-\mathrm{C}(8 \mathrm{~b})$ | 109.1 |
| $\mathrm{C}(8 \mathrm{a})-\mathrm{N}(1)-\mathrm{C}(16)$ | 124.5 | $\mathrm{C}(8)-\mathrm{C}(8 \mathrm{a})-\mathrm{C}(8 \mathrm{~b})$ | 119.5 |
| $\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(2 \mathrm{a})$ | 106.5 | $\mathrm{C}(2 \mathrm{a})-\mathrm{C}(8 \mathrm{~b})-\mathrm{C}(5 \mathrm{a})$ | 126.7 |
| $\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{O}(19)$ | 125.9 | $\mathrm{C}(2 \mathrm{a})-\mathrm{C}(8 \mathrm{~b})-\mathrm{C}(8 \mathrm{a})$ | 109.7 |
| $\mathrm{C}(2 \mathrm{a})-\mathrm{C}(2)-\mathrm{O}(19)$ | 127.6 | $\mathrm{C}(5 \mathrm{a})-\mathrm{C}(8 \mathrm{~b})-\mathrm{C}(8 \mathrm{a})$ | 123.1 |
| $\mathrm{C}(2)-\mathrm{C}(2 \mathrm{a})-\mathrm{C}(3)$ | 121.7 | $\mathrm{C}(3)-\mathrm{C}(9)-\mathrm{C}(10)$ | 118.0 |
| $\mathrm{C}(2)-\mathrm{C}(2 \mathrm{a})-\mathrm{C}(8 \mathrm{~b})$ | 103.3 | $\mathrm{C}(3)-\mathrm{C}(9)-\mathrm{O}(25)$ | 121.4 |
| $\mathrm{C}(3)-\mathrm{C}(2 \mathrm{a})-\mathrm{C}(8 \mathrm{~b})$ | 109.5 | $\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{O}(25)$ | 120.5 |
| $\mathrm{C}(2 \mathrm{a})-\mathrm{C}(3)-\mathrm{C}(4)$ | 105.8 | $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$ | 124.4 |
| $\mathrm{C}(2 \mathrm{a})-\mathrm{C}(3)-\mathrm{C}(9)$ | 113.5 | $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(15)$ | 118.2 |
| $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(9)$ | 107.5 | $\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(15)$ | 117.3 |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ | 113.1 | $\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$ | 120.9 |
| $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(5 \mathrm{a})$ | 112.7 | $\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$ | 119.5 |
| $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(22)$ | 108.3 | $\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$ | 120.9 |
| $\mathrm{C}(5 \mathrm{a})-\mathrm{C}(5)-\mathrm{O}(22)$ | 106.7 | $\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$ | 120.8 |
| $\mathrm{C}(5)-\mathrm{C}(5 \mathrm{a})-\mathrm{C}(6)$ | 123.8 | $\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{C}(14)$ | 120.5 |
| $\mathrm{C}(5)-\mathrm{C}(5 \mathrm{a})-\mathrm{C}(8 \mathrm{~b})$ | 118.9 | $\mathrm{N}(1)-\mathrm{C}(16)-\mathrm{O}(17)$ | 119.8 |
| $\mathrm{C}(6)-\mathrm{C}(5 \mathrm{a})-\mathrm{C}(8 \mathrm{~b})$ | 117.0 | $\mathrm{N}(1)-\mathrm{C}(16)-\mathrm{C}(18)$ | 118.3 |
| $\mathrm{C}(5 \mathrm{a})-\mathrm{C}(6)-\mathrm{C}(7)$ | 120.5 | $\mathrm{O}(17)-\mathrm{C}(16)-\mathrm{C}(18)$ | 121.9 |
| $\mathrm{C}(5 \mathrm{a})-\mathrm{C}(6)-\mathrm{O}(20)$ | 113.5 | $\mathrm{C}(6)-\mathrm{O}(20)-\mathrm{C}(21)$ | 119.0 |
| $\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{O}(20)$ | 126.0 | $\mathrm{C}(5)-\mathrm{O}(22)-\mathrm{C}(23)$ | 113.3 |
| $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$ | 121.0 | $\mathrm{O}(22)-\mathrm{C}(23)-\mathrm{C}(24)$ | 109.5 |
| $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(8 \mathrm{a})$ | 118.5 |  |  |

actually found in (5). However, a [1,5] shift followed by keto-enol tautomerization or anionic proton loss and gain cannot a priori be excluded, but it seems unlikely that a single isomer would be obtained.

Because of the importance of the configuration of the tricyclic adduct in defining the mechanism, the deduc-
tions from n.m.r. data were confirmed by an $X$-ray analysis of the methoxy-derivative (5d) (Figure 2).

(7)

Crystal Structure.*-The crystal structure refinement yielded a final conventional $R$ factor of $3.6 \%$. The

Table 2
Torsion angles $\left({ }^{\circ}\right)$; only the most significant are reported; e.s.d. range $0.3-0.7^{\circ} ; \mathrm{A}$ and c denote the internal torsion angles of the corresponding rings; в denotes torsion angles involving relationships between ring B and $A$ and/or $C$

| A | $\mathrm{C}(8 \mathrm{a})-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(2 \mathrm{a})$ | 167.1 |
| :---: | :---: | :---: |
|  | $\mathrm{C}(8 \mathrm{a})-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{O}(19)$ | -11.1 |
|  | $\mathrm{C}(16)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(2 \mathrm{a})$ | -16.3 |
|  | $\mathrm{C}(16)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{O}(19)$ | 165.5 |
|  | $\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(8 \mathrm{a})-\mathrm{C}(8)$ | 12.4 |
| ${ }^{\text {A }}$ | $\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(8 \mathrm{a})-\mathrm{C}(8 \mathrm{~b})$ | -174.9 |
|  | $\mathrm{C}(16)-\mathrm{N}(1)-\mathrm{C}(8 \mathrm{a})-\mathrm{C}(8)$ | - 164.2 |
|  | $\mathrm{C}(16)-\mathrm{N}(1)-\mathrm{C}(8 \mathrm{a})-\mathrm{C}(8 \mathrm{~b})$ | 8.5 |
|  | $\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(16)-\mathrm{O}(17)$ | 4.0 |
|  | $\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(16)-\mathrm{C}(18)$ | $-175.5$ |
|  | $\mathrm{C}(8 \mathrm{a})-\mathrm{N}(1)-\mathrm{C}(16)-\mathrm{O}(17)$ | -179.9 |
|  | $\mathrm{C}(8 \mathrm{a})-\mathrm{N}(1)-\mathrm{C}(16)-\mathrm{C}(18)$ | 0.6 |
|  | $\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(2 \mathrm{a})-\mathrm{C}(3)$ | -41.4 |
| A | $\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(2 \mathrm{a})-\mathrm{C}(8 \mathrm{~b})$ | -164.8 |
|  | $\mathrm{O}(19)-\mathrm{C}(2)-\mathrm{C}(2 \mathrm{a})-\mathrm{C}(3)$ | 136.8 |
|  | $\mathrm{O}(19)-\mathrm{C}(2)-\mathrm{C}(2 \mathrm{a})-\mathrm{C}(8 \mathrm{~b})$ | 13.4 |
|  | $\mathrm{C}(2)-\mathrm{C}(2 \mathrm{a})-\mathrm{C}(3)-\mathrm{C}(4)$ | 4.3 |
|  | $\mathrm{C}(2)-\mathrm{C}(2 \mathrm{a})-\mathrm{C}(3)-\mathrm{C}(9)$ | - 113.3 |
| c | $\mathrm{C}(8 \mathrm{~b})-\mathrm{C}(2 \mathrm{a})-\mathrm{C}(3)-\mathrm{C}(4)$ | 124.8 |
|  | $\mathrm{C}(8 \mathrm{~b})-\mathrm{C}(2 \mathrm{a})-\mathrm{C}(3)-\mathrm{C}(9)$ | 7.1 |
|  | $\mathrm{C}(2)-\mathrm{C}(2 \mathrm{a})-\mathrm{C}(8 \mathrm{~b})-\mathrm{C}(5 \mathrm{a})$ | -19.9 |
| A | $\mathrm{C}(2)-\mathrm{C}(2 \mathrm{a})-\mathrm{C}(8 \mathrm{~b})-\mathrm{C}(8 \mathrm{a})$ | 167.4 |
| c | $\mathrm{C}(3)-\mathrm{C}(2 \mathrm{a})-\mathrm{C}(8 \mathrm{~b})-\mathrm{C}(5 \mathrm{a})$ | -151.1 |
|  | $\mathrm{C}(3)-\mathrm{C}(2 \mathrm{a})-\mathrm{C}(8 \mathrm{~b})-\mathrm{C}(8 \mathrm{a})$ | 36.3 |
| c | $\mathrm{C}(2 \mathrm{a})-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ | -115.6 |
|  | $\mathrm{C}(9)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ | 6.0 |
|  | $\mathrm{C}(2 \mathrm{a})-\mathrm{C}(3)-\mathrm{C}(9)-\mathrm{C}(10)$ | 22.8 |
|  | $\mathrm{C}(2 \mathrm{a})-\mathrm{C}(3)-\mathrm{C}(9)-\mathrm{O}(25)$ | - 153.4 |
|  | $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(9)-\mathrm{C}(10)$ | -93.8 |
|  | $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(9)-\mathrm{O}(25)$ | 89.9 |
| c | $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(5 \mathrm{a})$ | 139.4 |
|  | $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(22)$ | -102.8 |
|  | $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(5 \mathrm{a})-\mathrm{C}(6)$ | 3.0 |
| c | $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(5 \mathrm{a})-\mathrm{C}(8 \mathrm{~b})$ | $-170.5$ |
|  | $\mathrm{O}(22)-\mathrm{C}(5)-\mathrm{C}(5 \mathrm{a})-\mathrm{C}(6)$ | -115.8 |
|  | $\mathrm{O}(22)-\mathrm{C}(5)-\mathrm{C}(5 \mathrm{a})-\mathrm{C}(8 \mathrm{~b})$ | 70.7 |
|  | $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(22)-\mathrm{C}(23)$ | -83.3 |
|  | $\mathrm{C}(5 \mathrm{a})-\mathrm{C}(5)-\mathrm{O}(22)-\mathrm{C}(23)$ | 38.4 |
|  | $\mathrm{C}(5)-\mathrm{C}(5 \mathrm{a})-\mathrm{C}(6)-\mathrm{C}(7)$ | 8.6 |
|  | $\mathrm{C}(5)-\mathrm{C}(5 \mathrm{a})-\mathrm{C}(6)-\mathrm{O}(20)$ | - 171.7 |
| BC | $\mathrm{C}(5)-\mathrm{C}(5 \mathrm{a})-\mathrm{C}(8 \mathrm{~b})-\mathrm{C}(2 \mathrm{a})$ | 175.7 |
|  | $\mathrm{C}(5)-\mathrm{C}(5 \mathrm{a})-\mathrm{C}(8 \mathrm{~b})-\mathrm{C}(8 \mathrm{a})$ | - 12.6 |
|  | $\mathrm{C}(5 \mathrm{a})-\mathrm{C}(6)-\mathrm{O}(20)-\mathrm{C}(21)$ | 1.4 |
|  | $\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{O}(20)-\mathrm{C}(21)$ | --178.9 |
| AB | $\mathrm{N}(1)-\mathrm{C}(8 \mathrm{a})-\mathrm{C}(8 \mathrm{~b})-\mathrm{C}(2 \mathrm{a})$ | -174.8 |
| в | $\mathrm{N}(1)-\mathrm{C}(8 \mathrm{a})-\mathrm{C}(8 \mathrm{~b})-\mathrm{C}(5 \mathrm{a})$ | 12.2 |
| B | $\mathrm{C}(8)-\mathrm{C}(8 \mathrm{a})-\mathrm{C}(8 \mathrm{~b})-\mathrm{C}(2 \mathrm{a})$ | -1.9 |
|  | $\mathrm{C}(3)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$ | -174.2 |
|  | $\mathrm{C}(3)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(15)$ | 8.3 |
|  | $\mathrm{O}(25)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$ | 2.1 |
|  | $\mathrm{O}(25)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(15)$ | $-175.4$ |
|  | $\mathrm{C}(5)-\mathrm{O}(22)-\mathrm{C}(23)-\mathrm{C}(24)$ | 4.7 |

results of the anisotropic refinement (see Experimental section) are shown in Figure 2, which depicts the $\mathbf{2 5} \%$


Figure 2 ORTEP view of the molecular skeleton of the adduct (5d) (hydrogen atoms not included); the thermal ellipsoids are depicted according to the output of the last least-squares cycle (see text)
probability ellipsoids. ${ }^{10}$ Bond lengths and angles not involving hydrogen atoms are listed in Table 1, and the more significant torsion angles are given in Table 2. An analysis of the planarity of the ring is provided in Table 3. Tables of structure factors, atomic fractional co-

Table 3
Distances ( $\AA$ ) of the ring atoms from their least-squares interpolating planes; arranged in the same order as the defining atoms; e.s.d.s less than $0.006 \AA$

| Ring A | $\mathrm{N}(1)$ | $\mathrm{C}(2)$ | $\mathrm{C}(2 \mathrm{a})$ | $\mathrm{C}(8 \mathrm{a})$ | $\mathrm{C}(8 \mathrm{~b})$ |  |
| :--- | :---: | :--- | :---: | :---: | :---: | :---: |
|  | +0.046 | -0.099 | +0.074 | -0.007 | -0.065 |  |
| Ring B | $\mathrm{C}(5 \mathrm{a})$ | $\mathrm{C}(6)$ | $\mathrm{C}(7)$ | $\mathrm{C}(8)$ | $\mathrm{C}(8 \mathrm{a})$ | $\mathrm{C}(8 \mathrm{~b})$ |
|  | -0.023 | -0.004 | +0.026 | -0.013 | -0.016 | +0.037 |
| Ring c | $\mathrm{C}(2 \mathrm{a})$ | $\mathrm{C}(3)$ | $\mathrm{C}(4)$ | $\mathrm{C}(5)$ | $\mathrm{C}(5 \mathrm{a})$ | $\mathrm{C}(8 \mathrm{~b})$ |
|  | +0.240 | -0.349 | +0.296 | -0.080 | -0.095 | +0.014 |
| Ph of | $\mathrm{C}(10)$ | $\mathrm{C}(11)$ | $\mathrm{C}(12)$ | $\mathrm{C}(13)$ | $\mathrm{C}(14)$ | $\mathrm{C}(15)$ |
| PhCO | -0.003 | +0.003 | -0.001 | 0 | 0 | +0.001 |

ordinates, and thermal parameters are listed in Supplementary Publication No. SUP 21741 ( $12 \mathrm{pp} ., 1$ microfiche). $\dagger$

Both Tables 2 and 3 clearly show the half-chair conformation of ring C (in Table 2 the appropriate internal torsion angles are labelled c). The phenyl ring of the benzoyl group is strictly planar (Table 4). The distortion of the aromatic ring в from planarity (see also Table 3) is clearly connected with its fusion with the non-planar system ac. The angles between pairs of rings of the fused system are $\mathrm{AB}, 10.3^{\circ}$; $\mathrm{AC}, 13.0^{\circ}$; $\mathrm{BC}, 11.7^{\circ}$.

The final distances range between 0.88 and $1.16 \AA$, with fairly good angles. The shortest intermolecular distances are listed in Table 4; some are remarkably

[^3]short and apparently relatively strong molecular interactions are involved.

It is unfortunate that these new adducts are formed in such low yields because, in addition to their theoretical

Table 4
Shortest intermolecular distances ( $\AA$ ); e.s.d.s less than $0.005 \AA$
Symmetry code:

| (i) $x, 1+y, z$ |  | (vi) $\frac{1}{2}+x, \frac{3}{2}-y, \frac{1}{2}+z$ |  |
| :---: | :---: | :---: | :---: |
|  |  | (vii) $\frac{1}{2}-x, \frac{3}{2}+y, \frac{3}{2}$ |  |
| (iii) |  | (viii) $\frac{1}{2}-x,-\frac{1}{2}+y, \frac{1}{2}-z$ |  |
| (iv) |  | (ix) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{5}{2}-z$ |  |
| (v) $-x, 2-y, 2-z$ |  |  |  |
| $\mathrm{N}(1) \cdots \mathrm{O}\left(25^{\mathrm{v}}\right)$ | 3.062 | $\mathrm{C}(18) \cdot \cdots \mathrm{H} 3\left(24^{\text {i }}\right.$ ) | 2.991 |
| $\mathrm{C}(2) \cdots \mathrm{O}\left(25^{\text {v }}\right)$ | 3.066 | $\mathrm{O}(19) \cdots \mathrm{H} 2\left(21^{\text {fi }}\right.$ ) | 2.706 |
| $\mathrm{C}(2 \mathrm{a}) \cdots \mathrm{O}\left(25^{\mathrm{v}}\right)$ | 3.290 | $\mathrm{C}(21) \cdots \mathrm{H} 2\left(24^{\text {ij }}\right.$ ) | 2.895 |
| $\mathrm{C}(15) \cdots \mathrm{H} 3\left(24{ }^{\text {iiI }}\right)$ | 3.036 | $\mathrm{O}(22) \cdot \cdots \mathrm{Hl}\left(18^{\text {riii }}\right)$ | 2.762 |
| $\mathrm{O}(17) \cdots \mathrm{H}\left(7^{\text {iv }}\right.$ ) | 2.842 | $\mathrm{O}(25) \cdots \mathrm{H}\left(2 \mathrm{a}^{\mathrm{v}}\right)$ | 2.672 |
| $\mathrm{O}(17) \cdot \cdots \mathrm{H}\left(11^{\text {vii }}\right)$ | 2.807 | $\mathrm{O}(25) \cdots \mathrm{H}\left(13^{15}\right)$ | 2.745 |
| $\mathrm{O}(17) \cdots \mathrm{H} 3\left(21^{\text {iv }}\right)$ | 2.577 | $\mathrm{Hl}(4) \cdots \mathrm{Hl}\left(23^{\mathrm{HI}}\right)$ | 2.479 |
| $\mathrm{C}(18) \cdots \mathrm{O}\left(22^{\text {vij }}\right)$ | 3.209 | H2(18) $\cdots$ H3(24 ${ }^{\text {a }}$ | 2.641 |

interest, they could provide a potential synthetic approach to ergot-type precursors.

## EXPERIMENTAL

I.r. spectra (Nujol mulls) were obtained with a PerkinElmer 257 spectrophotometer. N.m.r. data were obtained
(from dioxan) (Found: $\mathrm{C}, 65.5 ; \mathrm{H}, 3.5 ; \mathrm{N}, 9.7 . \quad \mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires $\mathrm{C}, 65.3 ; \mathrm{H}, 3.45 ; \mathrm{N}, 9.5 \%$ ).
(1-Acetyl-2-oxoindolin-3-ylidene)acetophenones (1; $\mathrm{R}=$ Ac ).-These were prepared by acetylation of the 1 -unsubstituted derivatives by the literature methods: (1-acetyl-2-oxoindolin-3-ylidene) acetophenone ( $\mathrm{Ar}=\mathrm{Ph}$ ), ${ }^{14}$ (1-acetyl-2-oxoindol-3-ylidene)- $p$-methoxyacetophenone $\quad(\mathrm{Ar}=p$ $\mathrm{MeO} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$ ), ${ }^{2}$ (1-acetyl-2-oxoindolin-3-ylidene)- $p$-nitroacetophenone ( $\mathrm{Ar}=p-\mathrm{NO}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$ ). ${ }^{2}$
(1-Acetyl-5-methoxy-2-oxoindolin-3-ylidene)acetophenone (6a). This was obtained (45\%) as red-violet needles, m.p. $147^{\circ}$ (from acetic acid) (Found: C, 71.2; H, 4.8; N, 4.4. $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NO}_{4}$ requires $\mathrm{C}, 71.0 ; \mathrm{H}, 4.7 ; \mathrm{N}, 4.35 \%$ ), $\nu_{\text {max }}$ $1745 \mathrm{~s}, 1709 \mathrm{~s}, 1659 \mathrm{~s}$, and $1620 \mathrm{w} \mathrm{cm}{ }^{-1}$ ( $\mathrm{C}=\mathrm{O}$ of lactam, acetyl, and ketone, and exocyclic $\mathrm{C}=\mathrm{C}$, respectively), insufficiently soluble for n.m.r. data to be obtained.
(1-Acetyl-5-nitro-2-oxoindolin-3-ylidene) acetophenone (6b). This was obtained (77\%) as yellow crystals, m.p. 204-205 (from acetic acid) (Found: C, 64.4; H, 3.7; N, 8.5. $\mathrm{C}_{18^{-}}$ $\mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires $\mathrm{C}, 64.3 ; \mathrm{H}, 3.6 ; \mathrm{N}, 8.35 \%$ ), $v_{\text {max. }} 1753 \mathrm{~s}$, $1722 \mathrm{~s}, 1669 \mathrm{~s}$, and $1622 \mathrm{w} \mathrm{cm}^{-1}$ ( $\mathrm{C}=\mathrm{O}$ of lactam, acetyl, and ketone, and exocyclic $\mathrm{C}=\mathrm{C}$, respectively), $\delta 8.06$ (s, vinylic H).

Reaction of the Indolylideneacetophenones with Ethyl Vinyl Ether.-General method. As in the previously reported method, ${ }^{2}$ a suspension of the substrate $[(1)$ or ( 6$\left.)\right]$ ( 4 mmol ) in ethyl vinyl ether ( 12 ml ) was heated at $100^{\circ} \mathrm{C}$ in a Paar apparatus [reaction times 1 and 1.5 h for (6a) and (6b) respectively]. After cooling pure or nearly pure adduct of

Table 5
Properties of dihydropyran- and dihydrofuran-type adducts

by Dr. A. G. Invernizzi with a Perkin-Elmer R12A spectrophotometer (solvent, unless otherwise stated, $\mathrm{CDCl}_{3}$ ). Microanalyses were performed by Dr. D. Maggi.
(2-Oxoindolin-3-ylidene) acetophenones.-The following compounds were prepared by literature methods: (2-oxo-indolin-3-ylidene) acetophenone, ${ }^{11} p$-methoxy-( 2 -oxoindolin3 -ylidene) acetophenone, ${ }^{11}$ ( 2 -oxoindolin-3-ylidene)- $p$-nitroacetophenone, ${ }^{2}$ and (5-methoxy-2-oxoindolin-3-ylidene)acetophenone. ${ }^{12}$
(5-Nitro-2-oxoindolin-3-ylidene)acetophenone. This was obtained from 5 -nitroisatin ${ }^{13}$ and acetophenone by the reported method ${ }^{11}$ as yellow crystals ( $53 \%$ ), m.p. $229-231^{\circ}$
${ }^{11}$ H. G. Lindwall and J. S. Maclennan, J. Chem. Soc., 1932, 54, 4739.
${ }^{12}$ S. Pietra and G. Tacconi, Il Farmaco, Ed. Sci., 1958, 13, 893.
type (2) was collected and washed with diethyl ether. Crystalline mixtures of dihydropyrans of types (2) and (3) and benzindolones (5) were obtained as further crops from the concentrated mother liquors, after storage at low temperature. Finally, the oily residue was chromatographed [Merck Kieselgel ( $0.06-0.2 \mathrm{~mm}$ ); cyclohexane-ethyl acetate (70:30) as eluant] to give pure adduct of type (4) (first fraction) and small amounts of mixtures of adducts of types (2) and (3) and, sometimes, (5). Pure samples were obtained by fractional crystallization from ethanol. All adducts not previously described are reported in Tables 5

[^4]and 6 and the n.m.r. spectra are summarized in Tables 7 and 8.

X-Ray Analysis.-Crystal data. $\quad \mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{5}, \quad M=$ 393.443. Monoclinic, space group $P 2_{1} / n, a=12.557$ (4), $b=12.734(4), \quad c=12.510(4) \quad \AA, \quad \beta=92.28(4)^{\circ}, \quad U=$ $1998.779 \AA^{3}, Z=4, D_{\mathrm{c}}=1.307 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=\mathrm{Cu}-K_{\alpha}$ radiation, $\lambda=1.5418 \AA$, graphite monochromator, $\mu(\mathrm{Cu}-$ $\left.K_{\alpha}\right)=7.66 \mathrm{~cm}^{-1}$.

The cell parameters were determined by scanning rows (h00), (0k0), ( $00 l$ ), ( $h 0 h$ ), and ( $\bar{h} 0 h$ ) on a diffractometer, with $\mathrm{Cu}-K_{\alpha}$ radiation up to $50^{\circ}$, and with both positive and

Structure determination and refinement. The structure was solved by direct methods, after application of MULTAN; ${ }^{15}$ the solution was obtained with the set of signs with maximum likelihood. Refinement of the starting coordinates was carried out by full-matrix least-squares, until convergence, with a locally modified version of ORFLS ${ }^{16}$ (scattering factors ${ }^{17}$ ). No weighting scheme was applied. In the last least-squares cycle the secondary extinction coefficient and the anisotropic thermal parameters of the nonhydrogen atoms were refined, in order to improve the positional co-ordinates; no particular physical meaning is

Table 6
Properties of benz[cd]indolones (5)

| Compd. <br> (5a) | Physical aspect [yield (\%)] | $\begin{aligned} & \text { M.p. }\left({ }^{\circ} \mathrm{C}\right) \\ & 166-167{ }^{a} \end{aligned}$ | Elemental analysis (\%) |  | $\nu(\mathrm{C}=\mathrm{O})$ | $\nu(\mathrm{C}=\mathrm{O})$ | $\nu(\mathrm{C}=\mathrm{O})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | (acetyl) | (lactam) | (ketone) |
|  | Soft white needles $[3-4]$ |  | Found: $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{r}$ | C, $72.8 ; \mathrm{H}, 5.8 ; \mathrm{N}, 3.9$ <br> C, 72.7; H, $5.8 ; \mathrm{N}, 3.85$ | 1702 s | 1769 s | 1689 s |
| (5b) | Soft white needles $[2-3]$ | 161-162 ${ }^{\text {a }}$ | Found: <br> $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{5}$ requires | C, 70.35; H, 6.0; N, 3.6 C, 70.2; H, 5.9; N, 3.55 | 1 709s | 1765 s | 1670 s |
| (5c) | Yellowish needles [4] | 181-182 ${ }^{\text {a }}$ | Found: <br> $\mathrm{C}_{22} \mathrm{H}_{2 \mathrm{a}} \mathrm{N}_{2} \mathrm{O}_{6}$ requires | $\begin{aligned} & \text { C, } 65.0 ; \mathrm{H}, 5.05 ; \mathrm{N}, 7.0 \\ & \mathrm{C}, 64.7 ; \mathrm{H}, 4.95 ; \mathrm{N}, 6.85 \end{aligned}$ | 1 698s | 1781 s | 1684 s |
| (5d) | Pale yellow crystals [2-3] | 209-211 ${ }^{\text {b }}$ | Found: <br> $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{5}$ requires | C, 70.55; H, 5.95; N, 3.7 <br> C, 70.2; H, 5.9; N, 3.55 | 1 695s | 1763 s | 1678 s |
| (5e) | Small white needles $[2-3]$ | 181* | Found: <br> $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires <br> ${ }^{a}$ From ethanol. | C, 64.95 ; H, 4.95 ; N, 7.0 C, 64.7 ; H, 4.95 ; N, 6.85 From dioxan. | 1710 s | 1782 s | 1 680s |

Table 7
N.m.r. data for adducts of types (2)-(4) [Et groups designated $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \cdot \mathrm{C}\left(\mathrm{H}_{\mathrm{c}}\right)_{3}$; for $\mathrm{H}_{\mathrm{d}-\mathrm{g}}$ see formulae] Chemical shifts ( $\delta$ ) Coupling constants ( Hz )

| Compd. | $\mathrm{H}_{\text {d }}$ | $\mathrm{He}_{\mathrm{e}} \mathrm{H}_{4}$ | $\mathrm{H}_{\mathrm{g}}$ | $\mathrm{H}_{\mathbf{8}}$ | $\mathrm{H}_{\mathrm{b}}$ | $\mathrm{H}_{\mathrm{c}}$ | OMe | Ac | ArH | $\widetilde{J d e}+J_{\text {di }}$ | $J_{\text {eg }}+J_{t g}$ | $-J_{\mathrm{ab}}$ | $J_{0}$ (vic) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (2; $\mathrm{Ar}=\mathrm{Ph} ; 6-\mathrm{OMe}$ ) | 5.37 | 2.5 | 4.57 | 3.80 | 3.52 | 1.16 | 3.66 | 2.60 | 6.4-8.4 | 7.9 | 13.5 | 9.4 | 7.1 |
| (3; $\mathrm{Ar}=\mathrm{Ph} ; 6-\mathrm{OMe}$ ) | 5.62 | 2.3 | 4.95 | 3.96 | 3.73 | 1.25 | 3.57 | 2.63 | 6.25-8.4 | 7.3 | 14.5 | 10.6 | 7.0 |
| (2; $\mathrm{Ar}=\mathrm{Ph} ; 6-\mathrm{NO}_{2}$ ) | 5.47 | 2.5 | 4.63 | 3.89 | 3.60 | 1.13 |  | 2.67 | 7.3-8.6 | 6.6 | 12.2 | 9.3 | 7.3 |
| (3; $\mathrm{Ar}=\mathrm{Ph} ; 6-\mathrm{NO}_{2}$ ) | 5.63 | 2.3 | 5.01 | 3.99 | 3.79 | 1.28 |  | 2.70 | 7.5-8.6 | 6.7 | 14.5 | 9.4 | 7.3 |
| (4; $\mathrm{Ar}=\mathrm{Ph}: 5-\mathrm{OMe})$ | 4.79 | 2.5 | 5.57 | 3.96 | 3.62 | 1.22 | 3.75 | 2.66 | $6.65-8.25$ |  | 9.8 | 9.8 | 7.2 |

Table 8
N.m.r. data for the adducts (5) [Et designated $\mathrm{C}\left(\mathrm{H}_{\mathrm{B}}\right)_{3} \cdot \mathrm{C}\left(\mathrm{H}_{\mathrm{A}}\right)_{2}$; for $\mathrm{H}_{a-d}$ see formula (5)]

|  | Chemical shifts ( $\delta$ ) |  |  |  |  |  |  |  |  |  | Coupling constants ( Hz ) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Compd. | $\widetilde{H a}$ | Hb | $\mathrm{H}_{0}$ | $\mathrm{H}_{0}{ }^{\text {a }}$ | $\mathrm{H}_{\mathrm{d}}$ | $\mathrm{H}_{\text {A }}$ | $\mathrm{H}_{B}$ | Ac | OMe | ArH | $\widetilde{J a b}$ | $J \mathrm{bc}$ | $J \mathrm{bc}^{\prime}$ | $J \mathrm{~cd}$ | $J^{\prime} \mathrm{d}$ | - J $\mathrm{cc}^{\prime}$ | $J_{\text {AB }}$ |
| (5a) | 4.29 | 3.94 | 2.05 | 2.40 | 4.59 | 3.68 | 1.24 | 2.55 |  | 7.2-8.3 | 10.0 | 10.0 | 4.0 | 4.0 | 4.0 | 14.0 | 7.0 |
| (5b) | 4.30 | 3.88 | 2.05 | 2.39 | 4.58 | 3.82 | 1.25 | 2.55 | 3.87 | 6.8-8.4 | 10.0 | 9.3 | 4.3 | 4.3 | 3.4 | 14.7 | 6.7 |
| (5c) | 4.26 | 3.96 | 2.09 | 2.42 | 4.64 | 3.72 | 1.26 | 2.55 |  | 7.15-8.5 | 10.5 | 9.9 | 3.9 | 4.3 | 3.3 | 14.2 | 6.8 |
| (5d) | 4.29 | 3.85 | 1.88 | 2.51 | 4.74 | 3.75 | 1.22 | 2.54 | 3.88 | 6.7-8.25 | 10.6 | 10.6 | 2.7 | 2.7 | 2.7 | 14.5 | 7.0 |
| (5e) | 4.36 | 3.96 | 1.97 | 2.25 | 5.41* | 3.67 | 1.14 | 2.58 |  | 7.4-8.3 | 10.6 | 10.7 | 3.6 | 4.0 | 2.0 | 14.7 | 7.1 |

negative $\theta$ values for assessing the zero of the corresponding circle.

Intensity measurements. 1302 reflections with $\theta$ (Cu$K) \leqslant 40^{\circ}$ were collected with a Philips PW1100 automatic diffractometer (from a crystal of approximately cubic shape and dimensions: $0.032 \times 0.035 \times 0.038 \mathrm{~cm}$ ); the working conditions were as follows: $\omega-2 \theta$ scan mode, $\omega$ range $1.4^{\circ}$, scan speed $0.05^{\circ} \mathrm{s}^{-1}$; $0.06^{\circ}$ of background radiation was measured on each side of the peak. The 1127 reflections with $I<3 \sigma$ ( $I$ ) were considered unobservably weak. Three reference reflections were monitored every 2 h and no decomposition was observed. The intensities were not corrected for absorption.

[^5]claimed for individual $B_{i j}$ values, and accordingly they are not reported.
All the hydrogen atoms were found as the more prominent peaks in a ( $F_{0}-F_{\mathrm{c}}$ ) Fourier synthesis; they were refined isotropically.

We thank Professor P. Grünanger for discussions and suggestions and ProfessorA. Coda for suggestions and facilities for solving the crystal structure. The Consiglio Nazionale delle Ricerche (C.N.R., Rome) is thanked for financial support.
[5/2177 Received, 10th November, 1975]

[^6]
[^0]:    1 Part XV, G. Desimoni, M. Monticelli, M. Nicola, and G. Tacconi, J. Amer. Chem. Soc., in the press.
    ${ }_{2}$ G. Tacconi, P. Iadarola, F. Marinone, P. P. Righetti, and G. Desimoni, Tetrahedron, 1975, 31, 1179.

[^1]:    ${ }^{4}$ P. Bamfield, A. W. Jonson, and A. F. Katner, J. Chem. Soc. (C), 1966, 1028.
    ${ }_{5}$ J. Sauer, Angew. Chem. Internat. Edn., 1967, 6, 16.

    - J. Sauer, Angew. Chem. Internat. Edn., 1966, 5, 211.

[^2]:    7 (a) R. Sustmann, Tetrahedron Letters, 1971, 2721; (b) R. Sustmann and H. Trill, Angere. Chem. Internat. Edn., 1972, 11, 838; (c) K. N. Houk, J. Amer. Chem. Soc., 1973, 95, 4092.
    ${ }^{8}$ G. Desimoni and G. Tacconi, Chem. Rev., 1975, 75, 651.

[^3]:    * Work carried out at the Centro di Studio per la Cristallografia stuttarale del C.N.R., Pavia.
    $\dagger$ For details of Supplementary Publications see Notice to Authors No. 7, J.C.S. Perkin I, 1975, Index issue.
    ${ }^{10}$ C. K. Johnson, ORTEP, Oak Ridge National Laboratory Report ORNL-3794, 1965.

[^4]:    ${ }^{13}$ N. O. Calvery, C. R. Noller, and R. Adams, J. Amer. Chem. Soc., 1925, 47, 3059.
    ${ }_{14}$ T. Kato, H. Yamanaka, and H. Ichikawa, Chem. and Pharm. Bull. (Japan), 1969, 17, 481.

[^5]:    ${ }^{15}$ P. Main, M. M. Woolfson, and G. Germain, 'MULTAN-a Computer Program for the Automatic Solution of Crystal Structures,' Universities of York, England, and Leuven, Belgium, 1971.

[^6]:    ${ }^{16}$ W. R. Busing, K. O. Martin, and H. A. Levy, ORFLS, Oak Ridge National Laboratory Report ORNL-TM-305, 1962.
    ${ }_{17}$ H. P. Hanson, F. Herman, J. D. Lea, and S. Skillman, Acta Cryst., 1964, 17, 1040.

